Brain uptake, retention, and efflux of aluminum and manganese.
نویسنده
چکیده
My colleagues and I investigated the sites and mechanisms of aluminum (Al) and manganese (Mn) distribution through the blood-brain barrier (BBB). Microdialysis was used to sample non-protein-bound Al in the extracellular fluid (ECF) of blood (plasma) and brain. Brain ECF Al appearance after intravenous Al citrate injection was too rapid to attribute to diffusion or to transferrin-receptor-mediated endocytosis, suggesting another carrier-mediated process. The brain:blood ECF Al concentration ratio was 0.15 at constant blood and brain ECF Al concentrations, suggesting carrier-mediated brain Al efflux. Pharmacological manipulations suggested the efflux carrier might be a monocarboxylate transporter (MCT). However, the lack of Al (14)C-citrate uptake into rat erythrocytes suggested it is not a good substrate for isoform MCT1 or for the band 3 anion exchanger. Al (14)C-citrate uptake into murine-derived brain endothelial cells appeared to be carrier mediated, Na independent, pH independent, and energy dependent. Uptake was inhibited by substrate/inhibitors of the MCT and organic anion transporter families. Determination of (26)Al in rat brain at various times after intravenous (26)Al suggested a prolonged brain (26)Al half-life. It appears that Al transferrin and Al citrate cross the BBB by different mechanisms, that much of the Al entering brain ECF is rapidly effluxed, probably as Al citrate, but that some Al is retained for quite some time. Brain influx of the Mn(2+) ion and Mn citrate, determined with the in situ brain perfusion technique, was greater than that attributable to diffusion, suggesting carrier-mediated uptake. Mn citrate uptake was approximately 3-fold greater than the Mn(2+) ion, suggesting it is a primary Mn species entering the brain. After Mn(2+) ion, Mn citrate, or Mn transferrin injection into the brain, brain Mn efflux was not more rapid than that predicted from diffusion. The BBB permeation of Al and Mn is mediated by carriers that may help regulate their brain concentrations.
منابع مشابه
Manganese toxicokinetics at the blood-brain barrier.
Increased manganese (Mn) use in manufacturing and in gasoline has raised concern about Mn-induced parkinsonism. Previous research indicated carrier-mediated brain entry but did not assess brain efflux. Using in situ rat brain perfusion, we studied influx across the blood-brain barrier (BBB*) of three predominant plasma Mn species available to enter the brain: Mn2+, Mn citrate, and Mn transferri...
متن کاملThe interaction between manganese and calcium fluxes in pancreatic beta-cells.
Electrothermal atomic-absorption spectroscopy was employed for measuring manganese in beta-cell-rich pancreatic islets isolated from ob/ob mice. The efflux from preloaded islets was estimated from the amounts remaining after 30 min of subsequent test incubations in the absence of Mn2+. An increase in the extracellular Mg2+ concentration promoted the Mn2+ efflux and removal of Na+ from a Ca2+-de...
متن کاملThe Pharmacokinetics and Toxicology of Aluminum in the Brain
The chemical forms (species) of aluminum in blood plasma and brain extracellular fluid are considered, as they are the candidates for brain aluminum uptake and efflux. The blood-brain barrier is the primary site of brain aluminum uptake. The mechanism of brain uptake of aluminum transferrin, long thought to be mediated by transferrin-receptor mediated endocytosis, requires further investigation...
متن کاملAcute Toxicity and Accumulation of Iron, Manganese and, Aluminum in Caspian Kutum Fish (Rutilus kutum)
Background: Iron, manganese, and aluminum are three abundant metals on earth and their concentrations have increased in aquatic environments as a result of natural and industrial activities. This study was undertaken to report the median acute toxicity (LC50) and accumulation of the sub-lethal concentration (10% 96-h LC50) of iron (Fe), manganese (Mn) and aluminum (Al) in kutum (Rutilus kutum) ...
متن کاملRelevance to manganese toxicity
Manganese shares the uniport mechanism of mitochondrial calcium influx, accumulates in mitochondria and is cleared only very slowly from brain. Using dual-label isotope techniques, we have investigated both Mn2" and Ca2" mitochondrial efflux kinetics. We report that (1) there is no significant Na+-dependent Mn2" efflux from brain mitochondria; (2) Mn2" inhibits both Na+-dependent and Na+-indepe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 110 شماره
صفحات -
تاریخ انتشار 2002